3D-MULTICOLOR SIM MICROSCOPY USED FOR AUTOMATED SEGMENTATION AND CHARACTERISATION OF AGE-RELATED INTRACELLULAR GRANULES

Florian Schock1,2,3,4, Gerrit Best1,2,4, Nil Celik2, Alena Bakulina5,9, Saadettin Sel2, Martin Hagmann1,2,4, Udo Birk1,3, Rainer Heintzmann6,7,10, Jürgen Hesser5,9, Stefan Dithmar2,8, Christoph Cremer1,3,4,9

1Kirchhoff Institute for Physics, University of Heidelberg; 2Department of Ophthalmology, University-Hospital Heidelberg; 3Institute of Molecular Biology, University of Mainz; 4Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg; 5Experimental Radiation Oncology, University Medical Center Mannheim, University of Heidelberg; 6Institute for Physical Chemistry and Abbe Center of Photonics, University of Jena; 7Leibniz Institute of Photonic Technology; 8Department of Ophthalmology, Hospital Wiesbaden; 9Institute for Scientific Computation (IWR), University of Heidelberg; 10Randall Division of Cell & Molecular Biophysics, King's College London

E-mail: Christoph.Cremer@kip.uni-heidelberg.de

KEY WORDS: Structured Illumination Microscopy, SIM, lipofuscine, medical physic, human tissue, retinal pigment epithelium, RPE, fluorescence, light microscopy

Age related macular degeneration (AMD), the main cause for legal blindness in industrial countries, is accompanied by accumulation of lipofuscine granules inside the cells of the retinal pigment epithelium (RPE).\cite{1}

We show, that by applying “Structured Illumination Microscopy” (SIM) in combination with three excitation wavelengths (488nm, 568nm, 671nm) and up to four emission filters, we were able to clearly resolve these intracellular structures \cite{2,3}, and to identify different lipofuscine granules as well as intra-granule regions based on spectral discrimination.

Using SIM we were able to discriminate and analyse more than 100 granules inside single cells, and compare these results with those obtained using other microscopy techniques. We present statistical data of single granules gained by analysing over 250 cells on histological samples from twelve donors of different age.

All work on human tissue was done according to the Declaration of Helsinki.

\cite{1} V. L Bonilha; Age and disease-related structural changes in the retinal pigment epithelium, Clinical Ophthalmology 2008, 2:413-424
\cite{2} G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, C. Cremer (2011); Structured illumination microscopy of autofluorescent aggregations in human tissue, Micron 42;
\cite{3} T. Ach, G. Best, S. Rossberger, R. Heintzmann, C. Cremer, S. Dithmar ;Autofluorescence imaging of human RPE cell granules using structured illumination microscopy; British Journal of Ophthalmology, BJO Online First