Optical tweezers and atomic force microscopy for breast cancer cells characterization

Giovanna Coceano,ab Muhammad Sulaiman Yousafzai,ab Dan Cojoca and Enrico Ferraric

a CNR-IOM, Optical Manipulation Lab, Area Science Park, Basovizza, S.S. 14, km 163.5, 34149 Trieste, Italy
b University of Trieste, Piazzale Europa 1, 34128, Trieste, Italy
c University of Lincoln, Joseph Banks Laboratories, Green Lane, LN6 7DL Lincoln, United Kingdom

KEY WORDS: Optical tweezers, atomic force microscopy, breast cancer, cell mechanics

The characterization of the mechanical properties of cancer cells is a key aspect in understanding tumour progression towards metastasis.1 Elasticity is one of the most investigated mechanical property of the cell and is increasingly considered as a potential label free marker of cancer progression.2 Atomic Force Microscopy (AFM) and Optical Tweezers (OT) have been used to vertically indent single cells and to measure the elastic modulus of three human breast cell lines (HBL-100, MCF-7 and MDA-MB-231) characterized by different levels of aggressiveness. For both methods we found that the highly aggressive cells, MDA-MB-231, are significantly softer than the others. The correlation between the elastic behaviour found in the cell lines studied here and their aggressiveness levels, highlights the importance of a systematic and quantitative approach to the mechanobiology of breast cancer.

Figure 1: Vertical cell indentation using AFM (a) and OT (b)