TOWARDS FEMTOSECOND DIGITAL LENSLESS HOLOGRAPHIC MICROSCOPY

Alejandro Calabuig1, Omel Mendoza-Yero1, Enrique Tajahuerce1, Jesús Lancis1, Pedro Andrés2, and Jorge García-Sucerquia2,3

1GROC-UJI, Departament de Física and Institut of New Imaging Technologies (INIT), Universitat Jaume I, 12080 Castelló, Spain.
2Departamento de Óptica, Universitat de València, 46100 Burjassot, Spain.
3Universidad Nacional de Colombia, Sede Medellín, School of Physics, Medellín, 050034, Colombia.

jigarcia@unal.edu.co

KEY WORDS: Femtosecond laser, digital lensless holographic microscopy.

The coherence properties of light determine the performance of digital holographic microscopy (DHM). While two-arm DHM needs both temporal and spatial coherence to operate properly, the single-arm DHM relaxes the requirements over the former. For both architectures continuous wave lasers have been the preferred light sources because they simplify the experimental set-ups. New radiation sources are now used in DHM for optimizing its performance and/or to explore new fields of application \cite{1, 2}. Femtosecond lasers have been proposed recently for both DHM architectures \cite{3, 4}. For two-arm DHM, the limited coherence time imposes experimental configurations with very short optical path differences and compensating devices for extending the field of interference \cite{3, 5}. Since the single-arm DHM relaxes the restrictions over the time coherence \cite{4}, it simplifies the utilization of femtosecond lasers. Among the several techniques to perform single-arm DHM, the digital lensless holographic microscopy (DLHM) \cite{6} is perhaps the simplest and most versatile implementation. In this contribution the use of femtosecond laser radiation in DLHM is presented. The need of producing a spherical wave to illuminate the sample introduces compromises between the peak- and average-power that must be managed carefully. The envisaged applications of femtosecond DLHM encourage the seeking of adequate compromises for the method to work appropriately. As a preliminary result, Fig. 1 shows an image of the reconstruction of a \textit{Syro acarus} from a hologram generated by DLHM with femtosecond laser radiation.

REFERENCES